
 N S L  I N  T E N S O R F L O W  
S O U R C E :  T E N S O R  F L O W  -  M E D I U M . C O M



 We are excited to introduce Neural Structured Learning in 

TensorFlow, an easy-to-use framework that both novice and advanced 

developers can use for training neural networks with structured 

signals. Neural Structured Learning (NSL) can be applied to construct 

accurate and robust models for vision, language understanding, and 

prediction in general. 

 Many machine learning tasks benefit from using structured data 

which contains rich relational information among the samples. For 

example, modeling citation networks, Knowledge Graph inference and 

reasoning on linguistic structure of sentences, and learning molecular 

fingerprints all require a model to learn from structured inputs, as 

opposed to just individual samples. These structures can be explicitly 

given (e.g., as a graph), or implicitly inferred (e.g., as an adversarial 

https://www.tensorflow.org/neural_structured_learning
https://www.tensorflow.org/neural_structured_learning
https://en.wikipedia.org/wiki/Knowledge_Graph


example). Leveraging structured signals during training allows 

developers to achieve higher model accuracy, particularly when the 

amount of labeled data is relatively small. Training with structured 

signals also leads to more robust models. These techniques have been 

widely used in Google for improving model performance, such 

as learning image semantic embedding. 

 Neural Structured Learning (NSL) is an open source framework 

for training deep neural networks with structured signals. It 

implements Neural Graph Learning, which enables developers to train 

neural networks using graphs. The graphs can come from multiple 

sources such as Knowledge graphs, medical records, genomic data or 

multimodal relations (e.g., image-text pairs). NSL also generalizes 

to Adversarial Learning where the structure between input examples is 

dynamically constructed using adversarial perturbation. 

NSL allows TensorFlow users to easily incorporate various structured 

signals for training neural networks, and works for different learning 

scenarios: supervised, semi-supervised and unsupervised 

(representation) settings. 

https://ai.google/research/pubs/pub46568.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/abs/1902.10814
https://ai.google/research/pubs/pub46568.pdf
https://arxiv.org/pdf/1412.6572.pdf


How Neural Structured Learning (NSL) Works

 In Neural Structured Learning (NSL), the structured 

signals─whether explicitly defined as a graph or implicitly learned as 

adversarial examples─are used to regularize the training of a neural 

network, forcing the model to learn accurate predictions (by 

minimizing supervised loss), while at the same time maintaining the 

similarity among inputs from the same structure (by minimizing the 

neighbor loss, see the figure above). This technique is generic and can 

be applied on arbitrary neural architectures, such as Feed-forward 

NNs, Convolutional NNs and Recurrent NNs. 

Create a Model with Neural Structured Learning (NSL)

 With NSL, building a model to leverage structured signals 

becomes easy and straightforward. Given a graph (as explicit 



structure) and training samples, NSL provides a tool to process and 

combine these examples into TFRecords for downstream training : 

python pack_nbrs.py --max_nbrs=5 \ 
labeled_data.tfr \ 
unlabeled_data.tfr \ 
graph.tsv \ 
merged_examples.tfr  

Next, NSL provides APIs to “wrap around” the custom model to 

consume the processed examples and enable graph regularization. 

Let’s directly take a look at the code example. 

import neural_structured_learning as nsl 
# Create a custom model — sequential, functional, or subclass.  
base_model = tf.keras.Sequential(…) 
# Wrap the custom model with graph regularization.  
graph_config = nsl.configs.GraphRegConfig( 
 
neighbor_config=nsl.configs.GraphNeighborConfig(max_neighbors=1)
)  
graph_model = nsl.keras.GraphRegularization(base_model, 
graph_config) 
# Compile, train, and evaluate.  
graph_model.compile(optimizer=’adam’,  
 loss=tf.keras.losses.SparseCategoricalCrossentropy(), 
metrics=[‘accuracy’])  
graph_model.fit(train_dataset, epochs=5)  
graph_model.evaluate(test_dataset) 

With less than 5 additional lines (yes, including the comment!), we 

obtain a neural model that leverages graph signals during training. 

https://www.tensorflow.org/tutorials/load_data/tf_records


Empirically, using a graph structure allows models to be able to train 

with less labeled data without losing much accuracy (for example, 10% 

or even 1% of the original supervision). 

What if No Explicit Structure is Given?

 What if the explicit structure (such as graphs) is not available or 

not given as inputs? NSL provides tools for developers to construct 

graphs from raw data; alternatively, NSL also provides APIs to 

“induce” adversarial examples as implicit structured signals. 

Adversarial examples are constructed to intentionally confuse the 

model一training with such examples usually results in models that are 

robust against small input perturbations. Let’s take a look at the code 

example below to see how NSL enables training with adversarial 

examples. 

import neural_structured_learning as nsl 
# Create a base model — sequential, functional, or subclass.  
model = tf.keras.Sequential(…) 
# Wrap the model with adversarial regularization.  
adv_config = nsl.configs.make_adv_reg_config(multiplier=0.2, 
adv_step_size=0.05)  
adv_model = nsl.keras.AdversarialRegularization(model, 
adv_config) 
# Compile, train, and evaluate.  
adv_model.compile(optimizer=’adam’, 



 loss=’sparse_categorical_crossentropy’, metrics=[‘accuracy’])  
adv_model.fit({‘feature’: x_train, ‘label’: y_train}, epochs=5) 
adv_model.evaluate({‘feature’: x_test, ‘label’: y_test}) 

 With less than 5 additional lines (again, including the comment), 

we obtain a neural model that trains with adversarial examples 

providing an implicit structure. Empirically, models trained without 

adversarial examples suffer from significant accuracy loss (e.g., 30% 

lower) when malicious yet not human-detectable perturbations are 

added to inputs. 

Ready to get started? 

Please visit https://www.tensorflow.org/neural_structured_learning/, 

and try out NSL today!

https://www.tensorflow.org/neural_structured_learning/

